|
Essentia
2.1-beta6-dev
|
#include <jama_eig.h>
Public Member Functions | |
| Eigenvalue (const TNT::Array2D< Real > &A) | |
| void | getV (TNT::Array2D< Real > &V_) |
| void | getRealEigenvalues (TNT::Array1D< Real > &d_) |
| void | getImagEigenvalues (TNT::Array1D< Real > &e_) |
| void | getD (TNT::Array2D< Real > &D) |
Private Member Functions | |
| void | tred2 () |
| void | tql2 () |
| void | orthes () |
| void | cdiv (Real xr, Real xi, Real yr, Real yi) |
| void | hqr2 () |
Private Attributes | |
| int | n |
| int | issymmetric |
| TNT::Array1D< Real > | d |
| TNT::Array1D< Real > | e |
| TNT::Array2D< Real > | V |
| TNT::Array2D< Real > | H |
| TNT::Array1D< Real > | ort |
| Real | cdivr |
| Real | cdivi |
Computes eigenvalues and eigenvectors of a real (non-complex) matrix.
If A is symmetric, then A = V*D*V' where the eigenvalue matrix D is diagonal and the eigenvector matrix V is orthogonal. That is, the diagonal values of D are the eigenvalues, and V*V' = I, where I is the identity matrix. The columns of V represent the eigenvectors in the sense that A*V = V*D.
If A is not symmetric, then the eigenvalue matrix D is block diagonal with the real eigenvalues in 1-by-1 blocks and any complex eigenvalues, a + i*b, in 2-by-2 blocks, [a, b; -b, a]. That is, if the complex eigenvalues look like
u + iv . . . . .
. u - iv . . . .
. . a + ib . . .
. . . a - ib . .
. . . . x .
. . . . . y
then D looks like
u v . . . .
-v u . . . .
. . a b . .
. . -b a . .
. . . . x .
. . . . . y
This keeps V a real matrix in both symmetric and non-symmetric cases, and A*V = V*D.
<p> The matrix V may be badly conditioned, or even singular, so the validity of the equation A = V*D*inverse(V) depends upon the condition number of V.
(Adapted from JAMA, a Java Matrix Library, developed by jointly by the Mathworks and NIST; see http://math.nist.gov/javanumerics/jama).
|
inline |
Check for symmetry, then construct the eigenvalue decomposition
| A | Square real (non-complex) matrix |
References Array2D< T >::dim2().
|
inlineprivate |
|
inline |
Computes the block diagonal eigenvalue matrix.
If the original matrix A is not symmetric, then the eigenvalue
matrix D is block diagonal with the real eigenvalues in 1-by-1
blocks and any complex eigenvalues,
a + i*b, in 2-by-2 blocks, [a, b; -b, a]. That is, if the complex
eigenvalues look like
u + iv . . . . .
. u - iv . . . .
. . a + ib . . .
. . . a - ib . .
. . . . x .
. . . . . y
then D looks like
u v . . . .
-v u . . . .
. . a b . .
. . -b a . .
. . . . x .
. . . . . y
This keeps V a real matrix in both symmetric and non-symmetric cases, and A*V = V*D.
@param D: upon return, the matrix is filled with the block diagonal eigenvalue matrix.
|
inline |
Return the imaginary parts of the eigenvalues in parameter e_.
@pararm e_: new matrix with imaginary parts of the eigenvalues.
|
inline |
Return the real parts of the eigenvalues
|
inline |
Return the eigenvector matrix
|
inlineprivate |
References essentia::norm().
|
inlineprivate |
|
inlineprivate |
References TNT::hypot().
|
inlineprivate |
|
private |
|
private |
|
private |
Arrays for internal storage of eigenvalues.
|
private |
|
private |
Array for internal storage of nonsymmetric Hessenberg form. @serial internal storage of nonsymmetric Hessenberg form.
|
private |
|
private |
Row and column dimension (square matrix).
|
private |
Working storage for nonsymmetric algorithm. @serial working storage for nonsymmetric algorithm.
|
private |
Array for internal storage of eigenvectors.