Essentia
2.1-beta6-dev
|
#include <jama_lu.h>
Public Member Functions | |
LU (const Array2D< Real > &A) | |
int | isNonsingular () |
Array2D< Real > | getL () |
Array2D< Real > | getU () |
Array1D< int > | getPivot () |
Real | det () |
Array2D< Real > | solve (const Array2D< Real > &B) |
Array1D< Real > | solve (const Array1D< Real > &b) |
Private Member Functions | |
Array2D< Real > | permute_copy (const Array2D< Real > &A, const Array1D< int > &piv, int j0, int j1) |
Array1D< Real > | permute_copy (const Array1D< Real > &A, const Array1D< int > &piv) |
Private Attributes | |
Array2D< Real > | LU_ |
int | m |
int | n |
int | pivsign |
Array1D< int > | piv |
LU Decomposition.
For an m-by-n matrix A with m >= n, the LU decomposition is an m-by-n unit lower triangular matrix L, an n-by-n upper triangular matrix U, and a permutation vector piv of length m so that A(piv,:) = L*U. If m < n, then L is m-by-m and U is m-by-n.
The LU decompostion with pivoting always exists, even if the matrix is singular, so the constructor will never fail. The primary use of the LU decomposition is in the solution of square systems of simultaneous linear equations. This will fail if isNonsingular() returns false.
|
inline |
Compute determinant using LU factors.
|
inline |
Return lower triangular factor
|
inline |
Return pivot permutation vector
|
inline |
Is the matrix nonsingular?
References Array1D< T >::dim().
|
inlineprivate |
References Array1D< T >::dim().
Solve A*x = b, where x and b are vectors of length equal
to the number of rows in A.
b | a vector (Array1D> of length equal to the first dimension of A. |
References Array1D< T >::dim1().
Solve A*X = B
B | A Matrix with as many rows as A and any number of columns. |
References Array2D< T >::dim1(), and Array2D< T >::dim2().
|
private |
|
private |
|
private |
|
private |
|
private |