Gaia
|
The PCA Analyzer computes the Principal Components Analysis of the given DataSet using the specified descriptors. More...
#include <pca.h>
Public Member Functions | |
PCA (const ParameterMap ¶ms) | |
Transformation | analyze (const DataSet *dataset, const Region ®ion) const |
![]() | |
Analyzer (const ParameterMap ¶ms) | |
virtual Transformation | analyze (const DataSet *dataset) const |
void | checkDataSet (const DataSet *dataset) const |
Checks that the given dataset is valid. More... | |
void | checkMinPoints (const DataSet *dataset, int n) const |
Checks that the given dataset as at least the specified number of points. More... | |
const Region & | checkFixedLength (const Region ®ion, const PointLayout &layout) const |
Checks that the given Region only contains fixed-length descriptors and throws an exception if not. More... | |
Protected Attributes | |
QString | _resultName |
int | _targetDimension |
Real | _coveredVariance |
![]() | |
ParameterMap | _params |
QStringList | _descriptorNames |
QStringList | _exclude |
Additional Inherited Members | |
![]() | |
QString | name |
Name for the algorithm, usually the key that was used to instantiate it from the factory. | |
QStringList | validParams |
List of valid parameters this analyzer accepts. More... | |
The PCA Analyzer computes the Principal Components Analysis of the given DataSet using the specified descriptors.
NB: the dimension and coveredVariance parameters are exclusive, so you must specify only one of the two.
descriptorNames | the names of the descriptors to be included in the PCA analysis. Only accepts real descriptors, can use wildcards. (default: "*"). |
except | the names of the descriptors to be removed from the selected list specified before. Can use wildcards. (default: ""). |
resultName | the name of the resulting descriptor. (default: some name constructed from 'pca', the number of dimensions, and the original descriptor names) |
dimension | the target (final) dimension. |
coveredVariance | the percentage of the total variance to be covered by the PCA. The target dimension will then be chosen as the smallest one that accounts for at least that much variance. |